首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   1篇
  国内免费   32篇
测绘学   1篇
大气科学   1篇
地球物理   7篇
地质学   56篇
海洋学   2篇
自然地理   1篇
  2022年   3篇
  2021年   1篇
  2020年   3篇
  2019年   3篇
  2018年   9篇
  2017年   9篇
  2016年   1篇
  2015年   10篇
  2014年   2篇
  2013年   4篇
  2012年   3篇
  2011年   1篇
  2009年   2篇
  2008年   2篇
  2007年   2篇
  2006年   7篇
  2005年   1篇
  2004年   1篇
  1997年   2篇
  1996年   1篇
  1989年   1篇
排序方式: 共有68条查询结果,搜索用时 31 毫秒
51.
A complete Barrovian sequence ranging from unmetamorphosed shales to sillimanite–K-feldspar zone metapelitic gneisses crops out in a region extending from the Hudson River in south-eastern New York state, USA, to the high-grade core of the Taconic range in western Connecticut. NNE-trending subparallel biotite, garnet, staurolite, kyanite, sillimanite and sillimanite–K-feldspar isograds have been identified, although the assignment of Barrovian zones in the high-grade rocks is complicated by the appearance of fibrolitic sillimanite at the kyanite isograd. Thermobarometric results and reaction textures are used to characterize the metamorphic history of the sequence. Pressure–temperature estimates indicate maximum metamorphic conditions of 475 °C, c. 3–4 kbar in the garnet zone to >720 °C, c. 5–6 kbar in the highest grade rocks exposed. Some samples in the kyanite zone record anomalous (low) peak conditions because garnet composition has been modified by fluid-assisted reactions. There is abundant petrographic and mineral chemical information indicating that the sequence (with the possible exception of the granulite facies zone) was infiltrated by a water-rich fluid after garnet growth was nearly completed. The truncation of fluid inclusion trails in garnet by rim growth or recrystallization, however, indicates that metamorphic reactions involving garnet continued subsequent to initial infiltration. The presence of these textures in some zones of a well-constrained Barrovian sequence allows determination of the timing of fluid infiltration relative to the P–T paths. Thermobarometric results obtained using garnet compositions at the boundary between fluid–inclusion-rich and inclusion-free regions of the garnet are interpreted to represent peak metamorphic conditions, whereas rim compositions record slightly lower pressures and temperatures. Assuming that garnet grew during a single metamorphic event, infiltration must have occurred at or slightly after the peak of metamorphism, i.e. 4–5 kbar and a temperature of c. 525–550 °C for staurolite and kyanite zone rocks.  相似文献   
52.
The Late Ordovician Solund-Stavfjord ophiolite in western Norway represents a remnant of the Iapetus oceanic lithosphere that developed in a Caledonian marginal basin. The ophiolite contains three structural domains that display distinctively different crustal architecture that reflects the mode and nature of magmatic and tectonic processes operated during the multi-stage seafloor spreading evolution of this marginal basin. Domain I includes, from top to bottom, an extensive extrusive sequence, a transition zone consisting of dike swarms with screens of pillow breccias, a sheeted dike complex, and plutonic rocks composed mainly of isotropic gabbro and microgabbro. Extrusive rocks include pillow lavas, pillow breccias, and massive sheet flows and are locally sheared and mineralized, containing epidosites, sulfide-sulfate deposits, Fe-oxides, and anhydrite veins, reminiscent of hydrothermal alteration zones on the seafloor along modern mid-ocean ridges. A fossil lava lake in the northern part of the ophiolite consists of a >65-m-thick volcanic sequence composed of a number of separate massive lava units interlayered with pillow lavas and pillow breccia horizons. The NE-trending sheeted dike complex contains multiple intrusions of metabasaltic dikes with one- and two-sided chilled margins and displays a network of both dike-parallel normal and dike-perpendicular oblique-slip faults of oceanic origin. The dike-gabbro boundary is mutually intrusive and represents the root zone of the sheeted dike complex. The internal architecture and rock types of Domain I are analogous to those of intermediate-spreading oceanic crust at modern mid-ocean ridge environments. The ophiolitic units in Domain II include mainly sheeted dikes and plutonic rocks with a general NW structural grain and are commonly faulted against each other, although primary intrusive relations between the sheeted dikes and the gabbros are locally well preserved. The exposures of this domain occur only in the northern and southern parts of the ophiolite complex and are separated by the ENE-trending Domain III, in which isotropic to pegmatitic gabbros and dike swarms are plastically deformed along ENE-striking sinistral shear zones. These shear zones, which locally include fault slivers of serpentinite intrusions, are crosscut by N20°E-striking undeformed basaltic dike swarms that contain xenoliths of gabbroic material. The NW-trending sheeted dike complex in the northern part of Domain II curves into an ENE orientation approaching Domain III in the south. The anomalous nature of deformed crust in Domain III is interpreted to have developed within an oceanic fracture zone or transform fault boundary.REE chemistry of representative extrusive and dike rocks from all three domains indicates N- to E-MORB affinities of their magmas with high Th/Ta ratios that are characteristic of subduction zone environments. The magmatic evolution of Domain I encompasses closed-system fractional crystallization of high-Mg basaltic magmas in small ephemeral chambers, which gradually interconnected to form large chambers in which mixing of primary magmas with more evolved and fractionated magma caused resetting of magma compositions through time. The compositional range from high-Mg basalts to ferrobasalts within Domain I is reminiscent of modern propagating rift basalts. We interpret the NE-trending Domain I as a remnant of an intermediate-spread rift system that propagated northeastwards (in present coordinate system) into a pre-existing oceanic crust, which was developed along the NW-trending doomed rift (Domain II) in the marginal basin. The N20°E dikes laterally intruding into the anomalous oceanic crust in Domain III represent the tip of the rift propagator. The inferred propagating rift tectonics of the Solund-Stavfjord ophiolite is similar to the evolutionary history of the modern Lau back-arc basin in the SW Pacific and suggests a complex magmatic evolution of the Caledonian marginal basin via multi-stage seafloor spreading tectonics.  相似文献   
53.
The Kiziltepe ophiolitic thrust sheet in the Bolkar Mountains of Turkey occurs between two subparallel ophiolite belts bounding the Tauride carbonate platform and represents a remnant of the Cretaceous Neo-Tethyan oceanic lithosphere. It is underlain by foliated amphibolite that represents a metamorphic sole developed at the inception of an intra-oceanic subduction zone in the Neo-Tethys 92-90 Ma. Blueschist-facies overprinting of the amphibolite indicates that the metamorphic sole was dragged deeper into the subduction zone where it experienced increasing P/T with cooling. Regional tectonic constraints suggest a Maastrichtian age for the timing of this blueschist-facies metamorphism. Sodic amphibole-rich veins and crossite/Mg-riebeckite rims on hornblende suggest that growth of blueschist-facies minerals was facilitated by infiltration of fluid along fractures and grain boundaries. We infer a counterclockwise P-T-t trajectory during which metamorphism was accompanied/succeeded by rapid uplift along the northern edge of the Tauride belt in Late Cretaceous-early Tertiary time.  相似文献   
54.
In the following study, two methods were employed in which olive mill wastewaters were treated by using reverse osmosis membranes (BW30 and XLE). In the first, wastewater was centrifuged and then passed through the reverse osmosis whereas in the second, an ultrafiltration was placed between the centrifuge and the reverse osmosis. The reverse osmosis experiments were conducted under 10, 15, 20, and 25 bar. The chemical oxygen demand (COD) removal efficiencies under 25 bar were found to be 97.5% for both BW30 and XLE membranes. The highest conductivity removal rates obtained under 25 bar for BW30 and XLE membranes were found to be 95.6 and 96.2%, respectively. As for the highest permeation flux values obtained under 25 bar, they were separately determined for BW30 and XLE as 15.3 and 21.2 L m?2 h?1, respectively. The performances of the membranes were also evaluated in terms of their mass transfer coefficients. According to this, all mass transfer coefficients were found to be <1 and also in proximate to one another; this clearly reflects the results as COD and conductivity removals were approximate and there was a lack of any significant difference, whether ultrafiltration was applied or not.  相似文献   
55.
We report new δ13C ‐values data and N‐content and N‐aggregation state values for microdiamonds recovered from peridotites and chromitites of the Luobusa ophiolite (Tibet) and chromitites of the Ray‐Iz ophiolite in the Polar Urals (Russia). All analyzed microdiamonds contain significant nitrogen contents (from 108 up to 589 ± 20% atomic ppm) with a consistently low aggregation state, show identical IR spectra dominated by strong absorption between 1130 cm?1 and 1344 cm?1, and hence characterize Type Ib diamond. Microdiamonds from the Luobusa peridotites have δ13C ‐PDB‐values ranging from ‐28.7‰ to ‐16.9‰, and N‐contents from 151 to 589 atomic ppm. The δ13C and N‐content values for diamonds from the Luobusa chromitites are ‐29‰ to ‐15.5‰ and 152 to 428 atomic ppm, respectively. Microdiamonds from the Ray‐Iz chromitites show values varying from ‐27.6 ‰ to ‐21.6 ‰ in δ13C and from 108 to 499 atomic ppm in N. The carbon isotopes values bear similar features with previously analyzed metamorphic diamonds from other worldwide localities, but the samples are characterized by lower N‐contents. In every respect, they are different from diamonds occurring in kimberlites and impact craters. Our samples also differ from the few synthetic diamonds; we also analyzed showing enhanced δ13C ‐variability and less advanced aggregation state than synthetic diamonds. Our newly obtained N‐aggregation state and N‐content data are consistent with diamond formation over a narrow and rather cold temperature range (i.e. <950°C), and in a short residence time (i.e. within several million years) at high temperatures in the deep mantle.  相似文献   
56.
Various combinations of diamond, moissanite, zircon, corundum, rutile and titanitehave been recovered from the Bulqiza chromitites. More than 10 grains of diamond have been recovered, most of which are pale yellow to reddish–orange to colorless. The grains are all 100–300 μm in size and mostly anhedral, but with a range of morphologies including elongated, octahedral and subhedral varieties. Their identification was confirmed by a characteristic shift in the Raman spectra between 1325 cm~(-1) and 1333 cm~(-1), mostly at 1331.51 cm~(-1) or 1326.96 cm~(-1). This investigation extends the occurrence of diamond and moissanite to the Bulqiza chromitites in the Eastern Mirdita Ophiolite. Integration of the mineralogical, petrological and geochemical data of the Bulqiza chromitites suggests their multi–stage formation. Magnesiochromite grains and perhaps small bodies of chromitite formed at various depths in the upper mantle, and encapsulated the ultra–high pressure, highly reduced and crustal minerals. Some oceanic crustal slabs containing the magnesiochromite and their inclusion were later trapped in suprasubduction zones, where they were modified by tholeiitic and boninitic arc magmas, thus changing the magnesiochromite compositions and depositing chromitite ores in melt channels.  相似文献   
57.
The Pozanti-Karsanti ophiolite(PKO)in Turkey’s eastern Tauride belt comprises mantle peridotites,ultramafic to mafic cumulates,isotropic gabbros,sheeted dikes and pillow lavas.The mantle peridotites are dominated by spinel harzburgites with minor dunites.The harzburgites and dunites have quite depleted mineral and whole-rock chemical composition,suggesting high degrees of partial melting.Their PGEs vary from Pd-depleted to distinct Pd-enriched patterns,implying the crystallization of interstitial sulphides from sulphur-saturated melts(e.g.MORB-like forearc basalt).U-shaped or spoon-shaped REE patterns indicate that the PKO peridotites may have also been metasomatized by the LREE-enriched fluids released from a subducting slab in a suprasubduction zone.Based on the mineral and whole-rock chemical compositions,the PKO peridotites show affinities to forearc peridotites.Chromitites occur both in the mantle peridotites and the mantle-crust transition zone horizon(MTZ).Chromitites from the two different horizons have different textures but similar mineral compositions,consistent with typical high-Cr chromitites.Chromitites hosted by mantle harzburgites generally have higher total platinum-group element(PGE)contents than those of the MTZ chromitites.However,both chromitites show similar chondritenormalized PGE patterns characterized by clear IPGEs,Rh-enrichments relative to Pt and Pd.Such PGE patterns indicate no or only minor crystallization of Pt-and Pd enriched sulphides during formation of chromitites from a sulphur-undersaturated melt(e.g.boninitic or island arc tholeiitic melt).Dunite enveloping chromitite lenses in the ho*s ting harzburgite resulted from melt-rock reaction.We have performed mineral separation work on samples of podiform chromitite hosted by harzburgites.So far,more than200 grains of microdiamond and more than 100 grains of moissanite(Si C)have been separated from podiform chromitites.These minerals have been identified by EDX and Laser Raman analyses.The diamonds and moissanite are accompanied by large amounts of rutile.Additionally,zircon,monazite and sulphides are also common phases within the heavy mineral separates.Both diamond and moissanite have been analyzed for carbon and nitrogen isotopic composition using the CARMECA 1280-HR large geometry Secondary Ion Mass Spectrometer at the Helmholtz Zentrum Potsdam.In total,61δ13CPDB results for diamond were acquired,exhibiting a range from-28.4‰to-18.8‰.31δ13CPDB results for Moissanite vary between-30.5‰to-27.2‰,with a mean value of-29.0‰.Diamond has relatively large variation in nitrogen isotopic composition with 40δ15NAIR results ranging from-19.1‰to 16.6‰.The discovery of diamond,moissanite and the other unusual minerals from podiform chromitite of the Pozanti-Karsanti ophiolite provides new support for the genesis of ophiolitic peridotites and chromitites under high-pressure and ultra-high reducing conditions.Considering the unusual minerals,the high Mg#silicate inclusions,and the needle-shaped exsolutions in the PKO chromitites,the parental melts of these chromitites may have been mixed with deep asthenospheric basaltic melts that had assimilated materials of the descending slab when passing through the slab in a subduction zone environment.We suggest melt-rock reactions,magma mixing and assimilation may have triggered the oversaturation of chromites and the formation of PKO chromitites.  相似文献   
58.
59.
60.
Rapid land use/land cover changes have taken place in many cities of Turkey. Land use and land cover changes are essential for wide range of applications. In this study, Landsat TM satellite imageries date from 1987, 1993, 2000 and 2010 were used to analyse temporal and spatial changes in the Western Black Sea Region of Turkey. Zonguldak and Eregli two largest and economic important cities which have been active coal mining and iron fabric areas. Maximum Likelihood Classification technique was implemented and the results were represented in classes of open area, forest, agricultural, water, mining, urban and pollution in the sea. Urban areas on both cities increased from 1987 to 2010. The agricultural and open areas from 1987 to 2010 decreased in parallel to land use and land cover change in both cities. Meanwhile, forest areas increased continuously with about 20 % from 1987 to 2010 in both cities. As industrial activity, the coal fields doubled from 1987 to 2010.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号